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Abstract

The modeling of mixing by molecular diffusion is a central aspect for transported probability den-

sity function (tPDF) methods. In this paper, the newly-proposed shadow position mixing model

(SPMM) is examined, using a DNS database for a temporally evolving di-methyl ether slot jet

flame. Two methods that invoke different levels of approximation are proposed to extract the

shadow displacement (equivalent to shadow position) from the DNS database. An approach for a

priori analysis of the mixing-model performance is developed. The shadow displacement is highly

correlated with both mixture fraction and velocity, and the peak correlation coefficient of the shadow

displacement and mixture fraction is higher than that of the shadow displacement and velocity. This

suggests that the composition-space localness is reasonably well enforced by the model, with appro-

priate choices of model constants. The conditional diffusion of mixture fraction and major species

from DNS and from SPMM are then compared, using mixing rates that are derived by matching the

mixture fraction scalar dissipation rates. Good qualitative agreement is found, for the prediction of

the locations of zero and maximum/minimum conditional diffusion locations for mixture fraction

and individual species. Similar comparisons are performed for DNS and the IECM (interaction by

exchange with the conditional mean) model. The agreement between SPMM and DNS is better

than that between IECM and DNS, in terms of conditional diffusion iso-contour similarities and

global normalized residual levels. It is found that a suitable value for the model constant c that

controls the mixing frequency can be derived using the local normalized scalar variance, and that
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the model constant a controls the localness of the model. A higher-Reynolds-number test case is

anticipated to be more appropriate to evaluate the mixing models, and stand-alone transported

PDF simulations are required to more fully enforce localness and to assess model performance.

1. Introduction

The modeling of mixing by molecular diffusion of chemical species is a central aspect of turbulent

combustion modeling. Molecular mixing models play an especially important role in the transported

probability density function (tPDF) method, since the chemical reaction source terms are treated

exactly, so that molecular transport is the dominant modeling burden. Enormous effort has been

invested into the development of molecular mixing models over the past few decades [1]. Available

mixing models include the coalescence and dispersion model (CD, or Curl’s model) [2], a modified

Curl’s model [3] (MCD), the interaction by exchange with the mean (IEM) model [4] (or equivalently,

the linear mean square estimation – LSME – model [5]), the interaction by exchange with the

conditional mean (IECM) model [6, 7, 8], mapping closure (MC) models [9, 10], multiple mapping

closure (MMC) models [11, 12], the Euclidean minimum spanning tree (EMST) model [13], Fokker-

Planck (FP)-equation based models [14, 15], and the parameterization of one-dimensional scalar

profiles (PSPs) mixing model [16, 17, 18].

Criteria for assessing mixing models and desirable properties of mixing models have been estab-

lished [13, 19], and these are summarized in Table 1. The attributes of four of the more prominent

mixing models, and the model that is the focus of the present study, with respect to these criteria

are indicated in Table 1. None of the existing models possesses all of the desirable properties,

although some models (e.g., EMST) satisfy the most important criteria, which include conservation

of means, localness and boundedness. EMST has proven to be robust and accurate over a wide

range of conditions [20]. Nevertheless, EMST has limitations. For example, it violates the linearity

and independence principles, it does not yield Gaussian PDFs in appropriate circumstances, and it

is prone to stranding of particles in composition space [13, 21]. As a particle-based method, there

is no proof that EMST converges to a limit as the number of particles tends to infinity.

A new mixing model – the shadow-position mixing model (SPMM) – was proposed recently by

Pope [21]. SPMM draws on knowledge from and experience with the existing mixing models as

illustrated in Fig. 1. For example, in the IECM model it is argued that fluid particles with the

same velocity have a higher probability of mixing with one another, and because of this the IECM
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model satisfies turbulent-dispersion theory. On the other hand, the localness in composition space

enforced in the EMST model has led to great success in capturing the effects of turbulence-chemistry

interactions. The central idea behind the creation of SPMM is that fluid particles that share similar

history should have a higher probability of mixing with one another. Here, the word “history”

implies not only velocity history as captured by the IECM model, but also the scalar mixing history

as suggested by the EMST model. Thus, by construction, SPMM (to a good approximation) satisfies

criteria I to VII in Table 1 [21], which makes it a potentially attractive mixing model. It has already

been demonstrated that SPMM can preserve the localness in composition space (leading to strong

burning) in a homogeneous isotropic reactive scalar mixing layer [21], while the IECM model leads

to local extinction. A recent a posteriori study [22] of a temporally-evolving syngas flame also

shows that SPMM can enforce localness in composition space to the same extent that the EMST

model does.

In SPMM, the evolution of the composition of a notional Lagrangian particle (that is intended

to model the behavior of a fluid particle) due to molecular mixing is described by the following

equation:

dφ∗

dt
= − c

TL
(φ∗ − ⟨φ∗∣Z∗,X∗⟩ρ) , (1)

where c is a model constant, X∗ and φ∗ are the particle position and composition, respectively,

and ⟨φ∗∣Z∗,X∗⟩ρ denotes the Favre average of φ∗ conditioned on Z∗ and X∗. The particle position

evolves by dX∗/dt = U∗, where U∗ is the particle velocity. The quantity Z∗ is the shadow position,

which is a non-physical quantity associated with the particle, where Z∗ evolves by the stochastic

differential equation:

dZ∗ = ⟨U∗∣Z∗⟩ρdt −
a

TL
(Z∗ −X∗)dt + b(2σ2TL)1/2dW′ . (2)

Here a and b are model constants, TL is a Lagrangian time scale, σ is the r.m.s. velocity and W′ is

an isotropic Wiener process: the prime is used to emphasize that the Wiener process in the shadow

position equation is independent of the Wiener process W that is associated with particle motion.

The shadow displacement R∗ is then introduced, which is defined as

R∗ ≡ Z∗ −X∗ . (3)

The evolution of R∗ can be derived from Eqs. 2 and 3 as:

dR∗ = −(U∗ − ⟨U∗∣X∗⟩ρ)dt −
a

TL
R∗dt + b(2σ2TL)1/2dW′ . (4)
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Recognizing that conditioning on (Z∗,X∗) is equivalent to conditioning on (R∗,X∗), one can re-

formulate SPMM as,

dφ∗

dt
= − c

TL
(φ∗ − ⟨φ∗∣R∗,X∗⟩ρ) (SPMM) . (5)

SPMM is similar in structure to the IEM and IECM mixing models, for which the particle

composition evolution equations corresponding to Eq. 5 can be written as,

dφ∗

dt
= − cφ

TL
(φ∗ − ⟨φ∗∣X∗⟩ρ) (IEM) , (6)

dφ∗

dt
= − cU

TL
(φ∗ − ⟨φ∗∣U∗,X∗⟩ρ) (IECM) . (7)

In all three models, the particle composition relaxes toward the local (conditional) mean composition

on a time scale TL. The choice of the conditioning variable (R∗ or U∗) controls the location of

zero conditional diffusion points/lines in composition space; this is discussed further in Sec. 4

below. The choice of conditioning variable has been guided by insight gained from direct numerical

simulations (DNS) and experimental studies of canonical nonreacting and reacting turbulent flows.

For example, the observation that the mean scalar diffusion conditioned on the velocity is linearly

related to the velocity [23] motivates the choice of particle velocity as a conditioning variable

in IECM. A physical interpretation is that molecular mixing can only take place between fluid

particles that are sufficiently close (on the order of a Kolmogorov scale of separation) in physical

space, and therefore that reside in the same turbulent eddy and have similar velocities [7]. The

second key element in all three models is the mixing timescale, which controls the rate at which

the composition relaxes to its local (conditional) mean value. Different expressions for the mixing

rate have been used for different model variants. For example, the term cφ/TL in the IEM model

(Eq. 6) is more commonly written as cφω/2, where ω is a turbulent frequency (e.g., ω = ε/k in

a Reynolds-averaged formulation, where k is the turbulence kinetic energy and ε is the viscous

dissipation rate of turbulence kinetic energy) and cφ is a model constant that can be identified as

the ratio of a turbulence timescale τ = 1/ω to a turbulent scalar timescale τφ, with cφ = 2.0 usually

taken as the standard value.

In the case of SPMM, the physical interpretation of the conditioning variable R∗ is less clear, al-

though R∗ is, by design, highly correlated with both velocity and scalars [21]. Moreover, model anal-

ysis/calibration to date has been limited to highly idealized configurations (homogeneous, isotropic,
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constant-property systems [21]), and the extent to which the conclusions that were drawn there re-

garding specifications of an appropriate mixing timescale and model constants can be generalized is

not clear. It is desirable to develop a better physical understanding of the shadow displacement R∗,

to establish protocols for how to extract R∗ from DNS or experimental data, and to test/extend the

model for variable-property, inhomogeneous reacting systems with more realistic turbulence fields.

All of these are prerequisites to applying the model effectively in Reynolds-averaged and/or large-

eddy simulations of turbulent reacting flows. In addition, the potential computational difficulty

of conditioning on a three-dimensional variable (i.e., R∗) requires the identification of a preferred

direction in the test flame, and conditioning only on the component of R∗ in that direction. With

these motivations and limitations in mind, an a priori study of SPMM using DNS is undertaken

here. The configuration is a temporally evolving di-methyl ether (DME) slot jet flame [24]. This

configuration features highly anisotropic and nonstationary turbulence, one direction of spatial in-

homogeneity, and strong turbulence-chemistry interactions (strong local extinction and reignition),

making it a challenging and appropriate target for testing mixing models.

The remainder of the paper is organized as follows. Details of the DNS configuration are provided

in Sec. 2. There Favre-averaged velocity and scalar statistics are extracted as functions of time,

and the Lagrangian time scale TL that is required in SPMM is discussed and quantified. In Sec. 3,

two different methods for extracting R∗ are proposed, and the evaluation of conditional diffusion

is explained in detail. Results are then presented and discussed in Sec. 4. The physical meaning of

shadow displacement is elucidated through its structure in physical space and its relationships with

velocity and mixture fraction. Comparisons of conditional diffusion between DNS and SPMM and

specification of model constants are presented and discussed. Finally, a summary and conclusions

are provided in Sec. 5.

2. The test flame

In this section, the DNS configuration is presented first. Velocity and scalar statistics including

turbulent transport coefficients and Lagrangian time scales are then presented, and issues in ex-

tracting appropriately smooth profiles from noisy DNS data are addressed. In addition to providing

input that is required for SPMM, the flow statistics provide information on the structure of the

system that is needed for subsequent modeling studies.
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2.1. DNS configuration

A statistically one-dimensional, temporally evolving DME slot jet flame is considered [24]

(Fig. 2). The computational domain extends 10H in the stream-wise direction (x), 16H in the

transverse direction (y), and 8H in the span-wise direction (z), where H is the width of the central

fuel jet (H =2.54 mm). Periodic boundary conditions are imposed in the x and z directions, and

outflow boundary conditions are specified in y. The system is statistically homogeneous in the x

and z directions. A central fuel jet (12% DME, 18% H2 and 70% N2 by volume) is injected in the

x direction. The fuel jet is sandwiched between two streams of oxidizer (31% O2 and 69% N2 by

volume) injected in the opposite direction. To initialize the flow field, small isotropic broadband

turbulent velocity fluctuations are superimposed on the mean velocity field, with the fluctuations

filtered outside the central jet. Thus, the computational domain can be divided into two regions:

the inner reactive turbulent flame core, which is located at the center of the computational domain

in y and grows with time; and the outer inert coflow regions with near-zero turbulent fluctuations.

The Reynolds number based on the fuel-jet properties is Re ≡ UjDH/ν =13,050, where DH

is the hydraulic diameter defined as DH = 2LzH/(Lz +H) and Lz is the spanwise extent of the

domain, ν is the kinematic viscosity of the unburnt fuel mixture at inlet temperature (450 K), and

Uj is given by Ufuel − Uoxidizer (∣Ufuel∣ = ∣Uoxidizer ∣) based on initial conditions. The Damköhler

number is defined to be Da = χqtj , where tj is the mean jet convective time (tj =DH/Uj) estimated

to be 41 µs based on the initial conditions, and χq is the extinction scalar dissipation rate that

is 1950 s−1. This combination of χq and tj results in a Damköhler number of 0.08. This low-

Damköhler-number flame exhibits a significant degree of local extinction and reignition. Similar

configurations have been studied using DNS with syngas and ethylene fuels [25, 26], at different

Reynolds and Damköhler numbers. The Reynolds number of this flame is slightly higher than those

in previous studies, and the Damköhler number is chosen to ensure significant occurrence of local

extinction.

A 30-species reduced DME mechanism [24] is used. The grid size is uniform in all three di-

rections, and it is chosen to be of the same order as the initial Kolmogorov length scale η. With

the decay of turbulence, the grid size is expected to correspond to even a smaller fraction of the

local Kolmogorov length scale. The time interval between adjacent DNS solution snapshots that

are available for analysis is approximately three times the local Kolmogorov time scale tη during

the initial period of the flame, and is reduced to 0.25 tη at later times. Therefore, both the spatial
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and temporal resolutions resolve the Kolmogorov scales, which are sufficient for the purposes of this

a priori study. Reynolds-averaged (or Favre-averaged) mean quantities are estimated as averages

over grid points in x − z planes, and are functions of y and t only. However, because of the finite

sample size, some care needs to be taken in extracting mean quantities, and this is discussed further

below.

A global indication of the robustness of combustion is the burning fraction, which is defined as

the fraction of points on the instantaneous three-dimensional isosurface of stoichiometric mixture

fraction (here ξst = 0.375) where the local OH mass fraction is above 75% of the peak OH mass

fraction (i.e., 9.77× 10−4).

The evolution of the burning fraction with time is shown in Fig. 3. There unity denotes robust

burning, and a value of zero corresponds to total extinction. It can be seen that the initially robust

DME flame undergoes strong local extinction, followed by reignition. The three time instants

labeled as tBME , tME , and tRI in Fig. 3 represent times before, at, and after maximum local

extinction; most of the subsequent analysis is performed at these three instants.

2.2. Velocity and mixture-fraction statistics

By construction, the conditioning variable R∗ is correlated with both the velocity and scalar

fields; this becomes more evident in the subsequent analysis (Secs. 3 and 4). Here key velocity- and

scalar-field statistics that are needed for model formulation and validation are presented. These

also provide useful insight into the structure of this statistically one-dimensional, time-dependent

flame, which is useful for subsequent modeling studies.

Figure 4 shows the Favre-averaged mean and r.m.s. velocity components and mixture fraction

profiles at the three time instants indicated in Fig. 3. Here u, v and w denote the x, y and z

components of velocity, respectively, and the mixture fraction ξ is defined using Bilger’s formula [27].

Favre-averaged quantities are denoted using a tilde, and fluctuations with respect to Favre-averaged

mean values are denoted using a double prime. For these mean profiles, statistical symmetry (or

anti-symmetry, as appropriate) with respect to the center plane in y has been assumed to double

the sample size and reduce noise. Even with that, some statistical error can still be observed (e.g.,

non-zero values of w̃).

By design, the stoichiometric surface for the flame lies in the high-shear/high-turbulence region,

so that the peak of ξrms ≡
√
ξ̃′′2 approximately aligns with the peaks of urms ≡

√
ũ′′2, vrms ≡

√
ṽ′′2,
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and wrms ≡
√
w̃′′2 in Fig. 4. The r.m.s. of both velocity and mixture fraction go to zero in the

quiescent coflow regions. Here a cutoff at 10% of ξrms,max [25] is used to distinguish between the

active combustion region and the nonreactive coflow. That is, at locations where ξrms < 0.1ξrms,max

(hereafter referred to as the coflow), the turbulent fluctuations are small and the composition is

essentially that of the oxidizer stream (verified by histograms of mixture fraction at those locations).

In regions where ξrms ≥ 0.1ξrms,max (hereafter referred to as the flame core), turbulence is intense,

and the mixture is reactive.

Profiles of the components of the normalized anisotropy tensor (bij = ũ′′i u′′j /ũ′′ku′′k −
1
3
δij) at the

same three time instants are shown in Fig. 5. It can be seen that the flow is highly anisotropic

inside the flame core. Also shown are the profiles corresponding to a standard k − ε turbulence

model, where

ũ′′i u
′′
j ∣
k−ε

= −νT (
∂ũi
∂xj

+ ∂ũj
∂xi

) + 2

3
νT
∂ũk
∂xk

δij +
2

3
kδij . (8)

Here the compact notation ui is used to represent the three components of velocity, i.e., u1 = u,

u2 = v, u3 = w. The turbulent viscosity is modeled by νT = Cµk2/ε, with Cµ = 0.09. ε is defined

as ⟨2νsijsij⟩ρ, where sij is the turbulent strain rate tensor (sij = 1
2
(∂ui

′′

∂xj
+ ∂uj

′′

∂xi
)). For the reactive

mixture, this model still performs reasonably well for the shear stress (represented by b12). The

highly anisotropic and nonstationary nature of this configuration is very different from the idealized

configurations considered in [21], and presents a significant modeling challenge for SPMM or any

other mixing model.

Finally, the turbulent mixture-fraction fluxes (ũ′′ξ′′, ṽ′′ξ′′, w̃′′ξ′′) extracted from the DNS are

shown in Fig. 6. Both ũ′′ξ′′ and ṽ′′ξ′′ are non-zero at all time instants, and the magnitude of ũ′′ξ′′

is larger than that of ṽ′′ξ′′. The w̃′′ξ′′ profiles fluctuate around zero. A similar relationship between

ũ′′ξ′′ and ṽ′′ξ′′ was observed experimentally in a constant-gradient homogeneous shear flow with

temperature as a passive scalar [28, 29]. For the temporally evolving slot-jet flame, the direction of

the scalar flux is significantly different than that of the mean scalar gradient (∂ξ̃/∂x = 0 here).

2.3. Evaluation of the Lagrangian time scale TL

Specification of an appropriate time scale is essential for any mixing model (e.g., Eqs. 5, 6, and 7),

and is particularly important in the context of SPMM for the shadow displacement equation (Eq. 4).

A Lagrangian time scale TL can be defined unambiguously in terms of the two-time Lagrangian ve-

locity autocorrelation function in statistically stationary, homogeneous, isotropic turbulence [21, 30].
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However, the definition for Lagrangian time scales is not obvious in a temporally-evolving, inhomo-

geneous, and anisotropic reacting flow. To be used in a modeling study, the definition must be in

terms of quantities that are included in standard models. Borrowing from the concepts developed

in statistically stationary, homogeneous, isotropic turbulence [21], for this case, we propose three

approximations for the Lagrangian time scales, as listed in Eqs. 9, 10 and 11:

TL,1 = −ṽ′′ξ′′/(σ2 ∂ξ̃

∂y
) (Approximation 1) , (9)

TL,2 = C1(t)L(y, t)/σ = C1(t)k2/3/(σε) (Approximation 2) , (10)

TL,3 = C2k/ε (Approximation 3) . (11)

Here, σ2 is the y-direction velocity variance (σ2 = ṽ′′2), C1(t) is a time-dependent coefficient, L(y, t)
is a length scale, and C2 is a time-independent constant. The turbulent scalar flux (ṽ′′ξ′′) can be

expressed using TL by rearranging Eq. 9:

ṽ′′ξ′′ = −TLσ2 ∂ξ̃

∂y
. (12)

Both Approximation 1 and Approximation 2 attempt to match the turbulent scalar flux calcu-

lated using TL to that obtained directly from DNS. All of the quantities required in Approximation

1 (Eq. 9) are available from the DNS (Sec. 2.2). For Approximation 2, C1(t) is a time-varying

constant that is obtained by minimizing (in a least-squares sense over y) the difference between the

scalar flux obtained from DNS and that obtained from Eq. 12 using TL,2. The turbulent length

scale L(y, t) is specified to be L(y, t) = C3/4
µ k(y, t)3/2/ε(y, t), using definitions borrowed from the

k-ε model. For 6tj , 8tj and 14tj , C1 is found to be 0.58, 0.72, and 0.99, respectively. For Approx

3, C2 is derived to be C2 = ( 1
2
+ 3

4
C0)−1 according to the Langevin model of [21]. Here C0 can be

taken as a constant value of 2.1, or it can be Reynolds-number dependent [31]. Approximation 3 is

included here because it is much easier to obtain TL,3 in a modeling study than to obtain TL,1 and

TL,2 directly. Thus, it is of interest to compare the magnitude of TL,3 with TL,1 and TL,2. Since

σ2TL frequently appears as one term in the governing equations for SPMM (e.g., in Eq. 5) , an

apparent turbulent diffusivity ΓT is defined,

ΓT (y, t) = TL(y, t)σ2(y, t) . (13)

When obtained using different approximations of TL, different apparent turbulent diffusivities are

obtained (i.e., ΓT,1, ΓT,2, ΓT,3).
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It is important to provide smooth profiles of TL and ΓT to obtain reasonable distributions of the

shadow displacement R∗. A direct calculation using the profiles of ṽ′′ξ′′, ∂ξ̃/∂y and σ2 is poorly

conditioned because of the division of two noisy profiles, both of which pass through zero, required

in Approximation 1 (Eq. 9). To mitigate this, ΓT,1 is set to the mixture-averaged N2 molecular

diffusivity and TL,1 is set to the jet time tj in regions where ξrms ≤ 0.1ξrms,max (outside of the

flame core). Cross-validated cubic b-splines [32] are then used to smooth the profiles of ΓT,1(y)
at each time instant. The profiles of TL,2 and TL,3 are by construction adequately smooth, so no

additional smoothing procedure is applied to TL,2 and TL,3 (hence ΓT,2 and ΓT,3).

Profiles of TL,1 and TL,2 and TL,3 are shown in Fig. 7. The profiles of TL,2 are smoother than

those of TL,1, and they are also more uniform across the transverse direction. The profile of TL,3

is also quite smooth and uniform across the transverse direction, and the profiles of TL,3 and TL,2

generally enclose the profile of TL,1.

While the values of TL,1 and TL,2 are similar inside the reactive shear layers, they can be quite

different at other locations. To further validate the approach, the turbulent scalar (mixture-fraction)

flux (ṽ′′ξ′′) extracted from DNS is compared with that obtained using Eq. 12 with either TL,1 or

TL,2 in Fig. 8. The turbulent flux computed using TL,1 is closer to the DNS profiles, because it is

calculated using the scalar flux extracted from DNS. Meanwhile, the scalar flux is recovered with

acceptable accuracy using TL,2, in spite of the large differences between TL,1 and TL,2 shown in

Fig. 7 near the centerline. This is because ṽ′′ξ′′ is essentially zero near the centerline, and the

differences between TL,1 and TL,2 in that region make insignificant differences in the scalar flux.

Inside the shear layer where the scalar gradient is significant, TL,1 and TL,2 are quite close. The

milder variation in the y-direction of TL,2 favors the use of TL,2 in the integration of the ODEs

required later in calculating R∗.

It should be pointed out here that the Lagrangian time scale extracted in this section is not

the same as the turbulence integral time scale. For example, by launching tracer particles at

locations where the transverse r.m.s. velocity peaks, the auto-correlation function of velocity has

been calculated and fitted to the Sawford model [33]. The inferred integral time scale for t = 8tj is

approximately 3.9 × 10−5 s, which is approximately 1.5 times TL,2, and TL,2 is closer to the value

calculated from the Lagrangian tracer particles than TL,3. To make TL,3 approximately equal to

TL,2, the implied C0 values are calculated to be 10.5, 8.2, and 5.7 at 6tj , 8tj and 14tj , respectively.

Given the similarity between TL,3 and TL,2, it is expected that it is possible to use TL,3 in a modeling
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study with appropriate scaling factor or with a proper model for a Reynolds-number-dependent C0.

Based on the analysis above, Approximation 2 is adopted to extract ΓT and TL in the remainder

of this paper.

3. Shadow displacement and conditional diffusion

In this section, the challenge of evaluating the shadow displacement in a priori tests is discussed

first, followed by the introduction of two different methods (Method 1 and Method 2) for extracting

the shadow displacement from DNS. The specification of the three model constants a, b and c is

then described. In Sec. 4, conditional scalar diffusion of mixture fraction and species mass fractions

are examined to explain model behavior and to compare the model with DNS. Here the definition

of the conditional diffusion is clarified, and the methods used to evaluate conditional diffusion from

DNS and from SPMM (and other mixing models) are discussed.

3.1. The challenge of the quantification of the shadow displacement R∗ in a priori tests

In an a posteriori simulation, the evolution of R∗ is governed not only by Eq. 4, but also by

Eq. 5. The subtlety comes from the involvement of ΓT and TL in Eq. 4. Both quantities are defined

using the scalar flux, the statistics of which can be altered through the evolution of scalar φ using

Eq. 5. In other words, conditioning on R∗ in Eq. 5 impacts the evolution of φ, and the improved

prediction of φ in turns changes the evolution of R∗ through ΓT and TL in Eq. 4. The coupling

between Eq. 4 and Eq. 5 is the driving mechanism that ensures localness in SPMM. It is recognized

that the influence of Eq. 5 on the evolution of R∗ cannot be directly represented in an a priori

DNS test, because scalars are deterministic from the DNS solution and cannot be influenced by the

introduction of R∗.

To test the performance of SPMM, it is essential that R∗ is properly correlated with the scalars

to ensure localness. It is shown in [21] that the correlation coefficient of R∗ and ξ can be as

high as unity, depending on the choice of model constants and the specific test case. Since the

main objective of this study is to evaluate the performance of SPMM in terms of the prediction of

conditional diffusion, indirect approaches (i.e., Method 1 and Method 2) that can best represent

the tight coupling between R∗ and ξ for the current test flame are introduced. In Method 1, R∗

is obtained through solving Eq. 4, and the impact of Eq. 5 is introduced through a constructed

quantity X. In Method 2, neither Eq. 4 nor Eq. 5 are used, and a surrogate of R∗ is introduced,
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which is constructed based on correlation coefficients of velocity and mixture fraction. Methods 1

and 2 are discussed in detail in Secs. 3.2 and 3.3, respectively.

The flame considered here is statistically one dimensional, so that only the y component of the

shadow displacement vector R∗ (denoted as R∗) is relevant. All the subsequent discussions on the

shadow displacement are in the context of statistically one-dimensional flames.

3.2. Quantification of the shadow displacement R∗: Method 1 (ODE integration)

In Method 1, the shadow displacement R∗ is obtained through the following stochastic differ-

ential equation (i.e., the one dimensional form of Eq. 4),

dR∗ = −aR∗ dt

TL
− v

′′

dt + b(2σ2TL)1/2dW ′ . (14)

The DNS velocity field is deterministic, and hence the only randomness in Eq. 14 is introduced

by the Wiener process, W ′. Therefore, the PDF of R∗ obtained through Eq. 14 is Gaussian, and

can be expressed in terms of its mean (denoted by R) and variance (denoted by S) [21]. Specifically,

R is defined to be R = ⟨R∗⟩W , where ⟨ ⟩W denotes an average over the Wiener process. In this

statistically one-dimensional, temporally evolving flame, the governing equations for R and S are

[21]:

DR

Dt
= − a

TL
R − v′′ , (15)

DS

Dt
= − 2a

TL
S + 2b2σ2TL , (16)

where the left-hand side is the usual material derivative (time-rate-of-change following a fluid par-

ticle).

From specified initial conditions, Eqs. 15 and 16 are integrated backward in time (first order)

along fluid particle pathlines for an ensemble of imaginary particles located at each grid point at

time t. A second-order backward integration has also been tested, and no discernable differences are

observed. A trilinear interpolation scheme is used to calculate intermediate particle locations during

the integration process. It has been reported that higher-order interpolation schemes are usually

required to preserve the trajectory of the Lagrangian particles in turbulent flows [34]. However,

since both the temporal and spatial resolutions are smaller than the Kolmogorov scales here, the

second-order trilinear scheme should suffice for the current test flame.
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For any grid point n, with specified R(n) and S(n) values, R∗(n) can be expressed as,

R∗(n) = R(n) +
√
S(n)g(n) . (17)

The statistics of R∗ evolve the same way as Eq. 14, if g is taken to be a standard Gaussian

random variable. The correlation between R∗ and v is captured correctly. To represent the

influence of Eq. 5 on the evolution of R∗, g is expressed as a function of a new variable X, where

X is not correlated with v and R, but is correlated with ξ. It should be noted that ξ is not a

unique choice to represent the scalars. However, it is a representative quantity, especially in non

premixed flames where turbulent fluctuations of reacting quantities are strongly correlated with

fluctuations of the mixture fraction [35]. Here a limiting case is considered, enforcing the highest

possible correlation between R∗ and ξ for a given model constant a by constructing X as:

X ≡ [ξ] + α[R] + β[v] , (18)

where square brackets denote a standardized variable, e.g.,

[ξ] ≡ (ξ − ξ̃)/ξrms . (19)

Coefficients α and β are determined by imposing the conditions that X is uncorrelated with both

R and v. g is then defined as

g = sign(−ρvξ)[X] , (20)

where ρvξ is the correlation coefficient between v and ξ. By introducing the variable X, the

correlation between R∗ and ξ is maximized to represent the level of localness that SPMM can

enforce in a corresponding a posteriori case, without changing the correlation between R∗ and

v. The initial conditions for R and S are taken to be the corresponding statistically stationary

solutions, described as:

R(x, y, z, t0) = −
v
′′(x, y, z, t0)TL(y, t0)

a + 1
, (21)

S(x, y, z, t0) =
σ2(y, t0)T 2

L(y, t0)b2
a

, (22)

The derivation of the statistically stationary solutions can be found in Appendix A.
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3.3. Quantification of the shadow displacement R∗: Method 2 (Surrogate model)

An alternative (potentially simpler) method to extract the shadow displacement R∗ from DNS

or experiments was proposed recently in [36]. There, a surrogate for R∗ (denoted as R∗
sg) was

constructed, which is a function of the correlation coefficients between ξ, v and R∗. The correlation

coefficients involving R∗ are specified to be functions of the correlation coefficient between ξ and v

(ρvξ), as follows:

ρvR∗ = ρovR∗ , (23)

ρR∗ξ = ρoR∗ξ
ρvξ

ρovξ
, for ∣ρvξ ∣ ≤ ρcrit , (24)

ρR∗ξ = ρvξρovR∗ − sign(ρvξ)[(1 − ρ2vξ)(1 − ρo2vR∗)]1/2, for ∣ρvξ ∣ > ρcrit , (25)

where ρovR∗ and ρoR∗ξ denote the values that were calculated for a statistically stationary, homoge-

neous, isotropic, uniform-mean-scalar-gradient example in [21]. Here ρcrit ≡
ρovξ
ρo
R∗ξ

is used to prevent

non-realizable values of ρR∗ξ. The quantity R∗
sg also depends on the standard deviation of velocity

(σv), the standard deviation of mixture fraction (σξ), v
′′, and ξ′′ at each grid point. The final form

of R∗
sg is:

R∗
sg

σR∗
= λv

′′

σv
+ κξ

′′

σξ
+ γη , (26)

where λ, κ and γ are coefficients (which can be obtained in terms of ρR∗ξ, ρvR∗ , with the condition

⟨(R
∗

sg

σ∗
R
)2⟩ = 1), and η is a standardized Gaussian random variable. Here σR∗ is the standard deviation

of R∗, but the value of σ∗R is immaterial since
R∗sg
σ∗
R

is only used for conditioning.

To summarize, two different methods are introduced in this study to obtain the one-dimensional

shadow displacement (R∗) for the test flame. In Method 1, one solves time-evolving ODEs for the

local mean (R) and variance (S) of shadow displacement (R∗) with prescribed initial conditions.

The correlation between R∗ and ξ is ensured by introducing a variable X that is maximally cor-

related with mixture fraction but uncorrelated with velocity. From here on, R∗
ODE is denoted to

represent R∗ obtained from Method 1. In Method 2, one replaces R∗ using the surrogate R∗
sg.

Method 1 is more computationally intensive, but it also invokes fewer assumptions. Method 2

avoids integrating ODEs in a priori studies, which provides a simpler way to evaluate SPMM in

DNS; this is also expedient in SPMM-based modeling studies, as one does not need to transport

the shadow displacement as an additional variable. However, Method 2 invokes more assumptions,
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and the validity of those assumptions needs to be tested. In the present study, Method 1 is taken

as the baseline, and comparisons with results from Method 2 are presented to assess the potential

of Method 2.

Next, some additional discussion of the specification of model constants and the evaluation of

conditional diffusion is provided.

3.4. Definition of the conditional diffusion

The performance of SPMM is evaluated by comparing the conditional diffusion extracted directly

from DNS with that extracted from DNS according to the SPMM formulation. In this section, the

conditional diffusion is defined and discussed.

For a composition variable φ (e.g., a mixture fraction or a species mass fraction), the molecular

diffusive flux Jφ is defined as:

Jφ ≡ −ρDφ▽ φ (for mixture fraction) , (27)

Jφ ≡ −ρDφ(▽Yi +
Yi
M

▽M) (for species) , (28)

where Dφ is either the thermal diffusivity (for mixture fraction) or the mixture-averaged molecular

diffusivity of composition variable φ, and M is the mixture-averaged molecular weight. In modeling

studies, the mean diffusive flux J φ is usually defined by replacing the values of ρ, Dφ and φ in

Eqs. 27 and 28 by their corresponding mean values:

J φ ≡ −⟨ρ⟩D̃φ▽ φ̃ (for mixture fraction) , (29)

J φ ≡ −⟨ρ⟩D̃φ(▽Ỹi +
Ỹi

⟨M⟩ ▽ ⟨M⟩) (for species) . (30)

With these definitions, ⟨Jφ⟩ ≠ J φ for the variable-property case, although in high-Reynolds-number

turbulent systems, ⟨Jφ⟩, J φ, and their difference should all be small compared to the r.m.s. scalar

flux. The part of the diffusive flux represented by mixing models is

J′
φ ≡ Jφ −J φ . (31)

Note that the mean −⟨J′φ⟩ is, in general, non-zero, although it is zero in models.

In the DNS, the rate of change of φ due to J′
φ

is

(∂φ
∂t

)DNS = −1

ρ
▽⋅J′φ , (32)
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whereas the rate of change of the particle composition due to the SPMM model is

(dφ
dt

)SPMM = − c

TL
(ψ − ⟨φ(x, t)∣X∗(t) = x,R∗(t) = R⟩ρ) . (33)

We define the conditional diffusions to be the conditioned means of these quantities ((∂φ
∂t

)DNS and

(∂φ
∂t

)SPMM ), i.e.,

DSPMM(ψ,x,R, t) ≡ ⟨(∂φ
∂t

)DNS ∣φ = ψ,X∗(t) = x,R∗(t) = R⟩ , (34)

DSPMM
M (ψ,x,R, t) ≡ ⟨(dφ

dt
)SPMM ∣φ = ψ,X∗(t) = x,R∗(t) = R⟩ . (35)

Here the subscript M is used to distinguish the conditional diffusion corresponding to the model

from that corresponding directly to the DNS conditional diffusion. If DSPMM
M = DSPMM , then

the SPMM is perfect in the sense that it causes the joint PDF of φ to evolve correctly. Hence

we appraise the model by comparing these two quantities. (Note that DSPMM
M = DSPMM is a

necessary and sufficient condition, and a weaker condition than (∂φ
∂t

)DNS = (∂φ
∂t

)SPMM , which is

impossible for a model to satisfy.)

For the IECM and IEM models, similar definitions are given by,

(dφ
dt

)IECM = − cU
TL

(ψ − ⟨φ(x, t)∣X∗(t) = x,U∗(t) = u⟩ρ) , (36)

(dφ
dt

)IEM = − cφ
TL

(ψ − ⟨φ(x, t)∣X∗(t) = x⟩ρ) . (37)

For subsequent analysis and comparisons, the corresponding definitions for the IECM and IEM

mixing models are:

DIECM(ψ,x,V, t) ≡ ⟨(∂φ
∂t

)DNS ∣φ = ψ,X∗(t) = x,U∗(t) = u⟩ , (38)

DIECM
M (ψ,x,V, t) ≡ ⟨(dφ

dt
)IECM ∣φ = ψ,X∗(t) = x,U∗(t) = u⟩ , (39)

DIEM(ψ,x, t) ≡ ⟨(∂φ
∂t

)DNS ∣φ = ψ,X∗(t) = x⟩ , (40)

DIEM
M (ψ,x, t) ≡ ⟨(dφ

dt
)IEM ∣φ = ψ,X∗(t) = x⟩ . (41)

It is noted that Eqs. 34, 38, 40 take the same form, except that the conditioning variables are

different.

In the current configuration, the Reynolds number is moderate, and it is of interest to check the

magnitudes of the mean and standard derivations of (∂φ
∂t

)D = − 1
ρ
▽⋅Jφ. This is done in Fig. 9 for
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mixture fraction. There the scatter plots of (∂φ
∂t

)D versus mixture fraction are plotted at all three

time instants mentioned in Fig. 3. The conventional conditional average of the scattered data are

superimposed as the red lines in each plot. Three y locations on the upper branch of the flame are

frequently examined throughout this paper. They are: the location corresponding to peak mixture

fraction fluctuation ξrms,max (hereafter referred to as yPM ), the locations corresponding to 75%

of ξrms,max on the lean (referred to as yPL) and rich (referred to as yPR) sides. The y locations

corresponding to yPM , yPL, and yPR change with time as the flame develops. Only locations yPM

and yPL are shown in Fig. 9.

The conditional diffusion data points are less scattered with increasing time. Except in Fig. 9

(b), the standard deviations based on all the data at one location are on the order of ten times

the mean values. The mean values are not negligible compared to the standard deviations, which

violates the usual high-Reynolds-number assumptions. In Fig. 9 (b), the standard deviation is 1000

times larger than the mean value. This is because this location is outside the flame, and there the

Reynolds number is relatively higher than inside the flame zone, due to the lower viscosity. It can

be seen that the test case is not perfect for testing mixing models under high-Reynolds-number

conditions. However, the current database provides the best data that are currently available. For

a modeling study under similar combustion and flow conditions, the mean drift term J φ should be

considered explicitly to accurately model this flame.

3.5. Specification of model constants

Initial values for model constants a, b, and c were established based on passive scalar results

in the statistically stationary, homogeneous, isotropic, constant-mean-scalar-gradient test case in

Sec. III of [21]; those values are listed in Table 2. There a normalized scalar variance Vφ(t) was

defined as,

Vφ(t) ≡
⟨φ′2⟩

(GσTL)2
, (42)

where G is the value of the constant mean scalar gradient, φ′ is the scalar fluctuation, and σ is the

r.m.s. velocity. In the limit as t→∞ (the stationary state), the normalized scalar variance was found

to be approximately equal to 3.3 (Vφ(∞) ≈ 3.3). By satisfying the dispersion-consistency condition

and applying the statistically stationary state condition [21], the relationship of the SPMM model
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constants and flow statistics was established as follows:

b = 1

1 + a , (43)

Vφ(∞) = 1

c
+ 2 + a

a
. (44)

Equation 44 sets a lower limit on a, such that c remains positive and finite: amin = 2/(Vφ − 1).
Then for any value of a that satisfies this requirement, the values of b and c follow from Eqs. 43

and 44, respectively. For the baseline case, a was chosen to be unity, so that b = 0.5 and (for

Vφ(∞) = 3.3) c = 3.27.

Due to the different nature of turbulence in the current test flame, it has been observed that

the standard value c = 3.27 over-predicts the mixing rates. To separate the effect of mixing rates

from the effect of composition-space localness, c is first estimated by matching the scalar dissipation

rate that is implied from SPMM to that implied from DNS. With the errors in c thus minimized

for each time and location, the remaining discrepancy shown below in the conditional diffusion is

mostly attributed to the description of the localness of the model.

To match the scalar dissipation rates between SPMM and DNS, the governing equation for a

passive scalar ξ is employed, as shown in Eq. 45:

Dξ

Dt
= 1

ρ
▽⋅ (ρDξ ▽ ξ) . (45)

Multiplying both sides of Eq. 45 by −2ρξ and taking conventional average, Eq. 45 becomes

⟨−2ρξ
Dξ

Dt
⟩ = ⟨2ρDξ ▽ ξ⋅▽ξ⟩ − ⟨ρDξ ▽2 ξ2⟩ − ⟨▽ξ2⋅▽(ρDξ)⟩ . (46)

It has been confirmed using the DNS database that the second and third terms on the right-hand

side of Eq. 46 are negligible compared to the first term, and the difference between ⟨2ρDξ ▽ ξ⋅▽ξ⟩
and ⟨2ρDξ ▽ ξ′′⋅▽ξ′′⟩ is indiscernible. Thus, ⟨−2ρξDξ

Dt
⟩/⟨ρ⟩ is a good representation of the scalar

dissipation rate based on mixture fraction. Using this idea, in the baseline case, c is obtained using

Eq. 47,

⟨ρ(x, t)φ(x, t)(∂φ
∂t

)DNS⟩ = ⟨ρ(x, t)φ(x, t)(dφ
dt

)SPMM ⟩ , (47)

where (∂φ
∂t

)DNS and (dφ
dt

)SPMM are defined in Eqs. 32 and 33, respectively. Model constant c

is embedded in Eq. 33, and thus can be determined using Eq. 47. The model constant c that is

determined this way is denoted c(opt).
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Similar methods are applied in the evaluation of the IECM model in this paper, to avoid the

complications from improper choices of mixing rates.

For a stand-alone transported PDF simulation, a possible algorithm to determine the values

of c on the fly is to employ the relationship in Eq. 44. Because none of the original assumptions

(homogeneous, isotropic, statistically stationary) holds at each step of the temporal jet simulation,

especially during early stages of the flame development, Vφ(∞) is replaced by Vφ(t), which renders

Eq. 44 as an approximation. Then Vφ(t) is calculated according to Eq. 42, where the constant

gradient G is replaced by the local gradient G∗(y) = ∂⟨ξ⟩
∂y

. Once a is chosen, the corresponding

model constant c (denoted as c(Vφ)) can be calculated according to Eq. 44. It is of interest to

compare c(opt) and c(Vφ), and this is discussed in Sec. 4.5.

3.6. Extraction of conditional diffusion from DNS

It is straightforward to extract the conditional diffusion for both the IECM and IEM models,

because all of the conditioning variables in Eqs. 38-41 are deterministic in DNS. Simple binning is

employed to calculate the conditional means. It is noted that the standardized Gaussian variables

involved in both methods result in different sets of R∗ for different realizations. However, the

difference in R∗ does not change the statistical results if enough samples are used to obtain them,

and it has been confirmed that the statistics extracted using different sets of standardized Gaussian

variables are identical.

For this statistically one-dimensional transient flame, at time t and transverse location y, there

are nx×nz grid points in the homogeneous x and z directions that can be used to compute statistics.

For the nth point, the mass fraction or mixture fraction φ(n), density ρ(n), molecular diffusivity

D(n)φ , and molecular diffusion (∂φ
∂t

)(n)DNS are calculated. Here R(n) and S(n) are retrieved from

previous calculations. The sample space (ψ) for the scalar φ is partitioned into J bins, and the

sample-space R corresponding to shadow displacement R∗ is partitioned into K bins. The DNS

estimate of the conditional diffusion at the bin centers (ψj+1/2 and Rk+1/2) is then obtained by a

conventional double-conditioning technique.

Similarly for the SPMM, (dφ
dt

)(n)SPMM is evaluated for grid point n, and the same double-

conditioning technique is applied.

A parametric study on bin size was conducted (not shown), and it was found that J = K = 50

bins is adequate in most cases. At certain locations (fuel core or coflow), the bins near the minimum

19



and maximum edges occasionally suffer from reduced sample sizes. Since most of the evaluations

are not at those locations, 50 bins are used in all the subsequent results. Uniform bins are used for

composition variables (and for velocity, in the case of IECM), where the minimum and maximum

values over the computational domain are taken as the upper and lower limits.

A similar approach is followed for the IECM model. An example of the conditional diffusion

extracted from DNS for the IECM model (DIECM ) and extracted according to the IECM model

(DIECM
M ) is shown in Fig. 10; similar figures for SPMM are shown and discussed in Sec. 4. Here

the mixing rate (i.e., the value of cU ) is determined by matching the scalar dissipation rate between

DNS and the IECM model, as described in Sec. 3.5. There the one-point, one-time normalized (by

1/tj) conditional diffusion of mixture fraction is shown as a function of mixture fraction (ξ) and

the normalized transverse instantaneous velocity v/vrms at tME at yPM .

To interpret Fig. 10, one can imagine that each point with coordinate (vi, ξj) is associated with

a fluid particle whose instantaneous velocity is vi and whose mixture fraction is ξj . The conditional

diffusion at point (vi, ξj) is essentially the diffusion source term which controls the evolution of the

particle’s mixture fraction due to molecular transport. As a passive scalar, the mixture fraction ξj

of the fluid particle increases due to positive conditional diffusion, and ξj decreases due to negative

conditional diffusion. Figure 10 (a) shows positive diffusion in the low-ξ regions (bottom half), and

negative diffusion in the high-ξ region. This means that fluid particles with high fuel content (high-

ξ) tend to have their mixture fraction reduced due to the negative conditional diffusion, so that such

fluid particles mix with leaner mixtures. The conditional diffusion in Fig. 10 (a) is also a function of

v, with higher ∣v∣ being associated with higher absolute values of the conditional diffusion. Figure 11

shows a scatter plot of y-direction velocity versus mixture fraction ξ at the same time and location.

It can be seen that large velocity magnitude (greater than 2vrms) is associated with the fuel-rich

side of mixture fraction, which explains the large conditional diffusion seen on the left and right

edges of the contour plot in Fig. 10 (a).

The conditional diffusion extracted from the IECM model (Fig. 10(b)) also shows that there is

a negative diffusion associated with fuel particles (high mixture fraction) and there is a positive

diffusion associated with the oxidizer (low mixture fraction). However, two distinct differences

between Fig. 10 (a) and Fig. 10 (b) can be observed. First, the locations of zero conditional

diffusion (white band) are somewhat different. For example, the IECM model shows larger variation

of the zero conditional diffusion band with velocity for low velocity magnitudes, which suggests that
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IECM over-emphasizes the role of velocity on molecular mixing in that region. A second difference

is that the IECM model does not capture the high-conditional-diffusion region for high velocity

magnitudes, especially on the negative (high ξ) side. It can be seen that the conditional diffusion

does depend on velocity, but the nature of this dependency might not be as simple as that implied

by the IECM model.

The difference between the DNS conditional diffusion and the conditional diffusion corresponding

to a particular mixing model can be used as a quantitative metric of model performance. A simple

global metric is the normalized residual defined as:

r̂res =
∑J×Ki=1 (DM

i −Di)2

∑J×Ki=1 D2
i

, (48)

where DM
i denotes the conditional diffusion calculated from the model for a bin i in R∗-ξ space (or

v-ξ space for IECM model), while Di denotes the conditional diffusion extracted from DNS for the

same bin. For example, the normalized residual for the IECM model at the same time and location

as shown in Fig. 10 is 2.13, which implies that the r.m.s. of the error is approximately 146%. The

normalized residuals are quantified and discussed further in Sec. 4.2.

4. Results and discussion

The evolution of shadow displacement is discussed first, by examining iso-contours of shadow

displacement and the correlations between shadow displacement and velocity and mixture fraction.

In the next two subsections, the conditional diffusion of mixture fraction from DNS is compared

with that from SPMM using Methods 1 and 2, respectively. Following that, the conditional diffusion

of individual species are discussed. Variations in the values of model constants c and a are discussed

in the next two subsections.

4.1. Shadow displacement

Snapshots of instantaneous contours of the shadow displacement on the central z =0 plane are

shown in Fig. 12, at the three instants in time. Here Method 1 (ODE integration) has been used,

with the baseline values of the model constants a and b (Table 2). The stoichiometric mixture

fraction line is superimposed on each plot, to indicate the flame locations. The flame core and the

coflow are separated (approximately) by the stoichiometric-mixture-fraction line. The values of R∗

approach zero in the coflow region. Between the stoichiometric lines, fine-scale structure can be
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seen in R∗. Figure 3 shows that local extinction begins at approximately 4.5tj , and that the flame

is essentially fully reignited by approximately 15tj . The shape of the stoichiometric line changes

during the local-extinction-reignition process, indicating a possible transition from a flame-folding

mechanism to edge-flame propagation [37, 38]. Premixed flame fronts have also been identified

during the re-ignition stage for a similar configuration with ethylene fuel [39].

By construction, R∗ is correlated with the transverse velocity v and with the mixture fraction

ξ; this can be seen in Fig. 13, where profiles of the correlation coefficients between R∗ and ξ (ρR∗ξ)

and between R∗ and v (ρvR∗) as functions of y are plotted at different instants in time. Results

for two different values of model constant a (a = 1 and a = 10) are shown, with b = 1
a+1 (the value

of c does not affect R∗ in a priori studies). Two dashed boxes whose edges cut through the 50%

ξrms,max locations are plotted to indicate the positions of the reaction zones. Only the regions

within the turbulent flame core (ξrms > 0.1ξrms,max) are of interest.

It can be seen that R∗ and v are always negatively correlated, while the correlation between R∗

and ξ can be either positive or negative; ρvξ and ρR∗ξ have opposite signs at all locations. Mixture

fraction is better correlated with R∗ than with v. A strong correlation between shadow displacement

and mixture fraction implies localness in composition space during mixing with SPMM, which is a

key desirable attribute (Table 1). Here ∣ρR∗ξ ∣ is higher than ∣ρvξ ∣, whereas an even larger difference

was reported in [21]. This is a consequence of the limitations of performing a priori tests for SPMM,

the complexity of this flame, and/or inappropriate values for the model constants.

With increasing a, the absolute value of peak in ρR∗ξ decreases, while the absolute value of ρvR∗

increases. In general, increasing the value of a decreases the localness of SPMM in composition

space. For a = 10, R∗ and v are almost perfectly (negatively) correlated. This is consistent with

the observation made in [21], that SPMM essentially reduces to IECM in the limit a →∞. This is

explored further in Sec. 4.6.

The magnitudes of the correlation coefficients do not change significantly with time. From

this, one can conclude that the local-extinction and reignition processes do not affect the degree

of correlation between R∗ and v and between R∗ and ξ. This supports the surrogate approach

(Method 2), which relies on these correlation coefficients.

To compare the localness captured by Method 1 and Method 2, the correlation coefficients

between R∗ and ξ are plotted at each y location at tRI in Fig. 14. In general, the values of

the correlation coefficients calculated for both methods are quite similar. The peak correlation
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coefficient from Method 2 is slightly higher than that from Method 1. Close to the central y plane,

the correlation coefficients from Method 1 are slightly higher than those from Method 2. Neither

method shows a correlation coefficient of 0.9 or above at any locations.

4.2. Conditional diffusion: Method 1 (ODEs for R and S)

The conditional diffusion calculated directly from DNS (Eq. 34) and that calculated according

to the SPMM formulation (Eq. 35, using Method 1, baseline values of the model constants a, b,

and c from Eq. 47) are compared for mixture fraction at the three time instants labeled in Fig. 3.

Figures 15, 16 and 17 show the conditional diffusion of mixture fraction from DNS and SPMM at

PM, PL, and PR at the three time instants.

Similar to the IECM example in Sec. 3.6, the conditional diffusion is normalized by the jet

frequency (1/tj), and R∗ is normalized by the r.m.s. of R∗ (R∗
rms) at each y location. For all time

instants, it has been found that R∗
rms is approximately half of the corresponding Taylor micro-

length scale at the corresponding y location. This gives an indication of the size of the region in

physical space from which the shadow displacement effectively draws information for the mixing

model.

The conditional diffusion of mixture fraction extracted from SPMM is qualitatively similar in

structure to that extracted from DNS (e.g., positive versus negative regions, zero line). SPMM

gives zero conditional diffusion where the scalar is equal to its corresponding conditional mean

value. DNS gives zero conditional diffusion where it actually is zero according to its definition. It

is desirable that these two zero-bands are located at the same locations in R∗-ξ space. It can be

seen that SPMM and DNS have zero conditional diffusion at similar locations in R∗-ξ space, but

not at exactly the same locations. A larger discrepancy is shown in the comparison between the

IECM model and DNS shown in Fig. 10. Similar behavior has also been observed in comparing

IEM and DNS results [40] (there the zero conditional diffusion location is a point). The location of

the zero conditional diffusion line can be controlled by changing the values of the model constants

that determine the shadow displacement. Another possible improvement is to build in information

about intermittency.

The similarities between the conditional diffusion contours from DNS and from SPMM are higher

at yPM (Fig. 15) and yPL (Fig. 16) at all time instants than at yPR (Fig. 17). It is speculated that

the intermittency effects might play a role at yPR where fuel particles have higher probabilities
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to be surrounded by other fuel particles, which results in a zero molecular diffusion at a higher

mixture fraction value, as seen in Fig. 17. SPMM captures the position of the zero-lines and the

locations of peak conditional diffusion values remarkably well at several locations (e.g., tME and

yPM , tRI and yPM ). Many highly-localized structures are observed in the conditional diffusion

from DNS. For example, the conditional diffusion changes signs three times in Fig. 16 (b) along

the left boundary of the contours from ξ = 1 to ξ = 0.4. These highly-localized structures are not

captured by the SPMM model at the same time and location. The formulation of SPMM dictates

that its prediction is fairly organized (i.e., there is a conditional mean line, and negative and positive

conditional diffusion above and below that line). As a model, SPMM is ultimately employed in a

RANS or LES context, where the grid size does not capture the smallest localized structures in any

case.

Besides the locations of the zero-conditional-diffusion bands, results from SPMM also show

better prediction of the locations of the maximum and minimum conditional diffusion, compared

to the IECM model at same time and location (Fig. 10). As discussed in Sec. 3.6, conditional

diffusion does depend on velocity; however, this dependency can be further improved by adding

scalar history information that is manifested through R∗.

By integrating the conditional diffusion over the scalar space (mixture fraction, in this case) and

R∗, one can recover the unconditional mean diffusion, which should be equal to zero by definition

and construction (property I in Table 1). For both DNS and SPMM, it has been confirmed that

the unconditional diffusion is very close to zero; small deviations result from the fact that the

Reynolds-number of the flow is moderate, as discussed in Sec. 3.4.

The global metric r̂res is also examined to evaluate the overall agreement between DNS and

SPMM, at tME and tRI , at all three locations. Results are summarized in Table 3. The first two

columns of Table 3 are obtained for Method 1. Column 1 contains results that are calculated using

the values of c described in Eq. 47 (c(opt)), while Column 2 contains results that are calculated

based on values of c calculated using Eq. 44 (c(Vφ)). Similarly, Columns 3 and 4 contain results

based on Method 2, using c(opt) and c(Vφ), which are discussed further in Sec. 4.3. As a comparison

between different mixing models, results calculated for the IECM model are also listed in Table 3.

Column 5 is calculated according to Eq. 47, using the definitions of IECM model (Eq. 36). The
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values of c in Column 6 (c(φ)) is obtained by

c(φ) = τ

τφ
, (49)

with τ = k/ε and τφ = ξ̃′′2

⟨2Dξ▽ξ′′▽ξ′′⟩ρ .

The normalized residuals calculated using c(opt) are smaller than those calculated using c(Vφ),
but they are quite close to one another. For both time instances, the normalized residuals are

smaller at yPR than at yPM and yPL. Values that are larger than unity are observed at yPM and

yPL, which are not desirable. The normalized residuals obtained from SPMM using Method 1 are

smaller than those obtained using the IECM model.

In summary, in Method 1, R∗ is forced to be highly correlated with mixture fraction by means

of the variable X (recall Sec. 3.2), and the model constant c is extracted from scalar dissipation

rates of mixture fraction. In Sec. 4.4, the conditional diffusions of CO and H2O are examined

using R∗ and c obtained from this section. The comparison there can be used to further evaluate

the performance of SPMM in terms of preserving localness and predicting mixing rates for each

individual species.

4.3. Conditional diffusion: Method 2 (surrogate for shadow displacement)

Figure 18 shows the normalized conditional diffusion of mixture fraction, based on the normal-

ized surrogate R∗
sg (Method 2), at yPM and yPR at tRI . It can be observed that the range of

R∗
sg/R∗

rms is similar to that of R∗
ODE/R∗

rms shown in Figs. 15, 16 and 17, but they are not exactly

the same.

The comparison between the DNS and modeled conditional diffusion iso-contours is similar to

that shown in Sec. 4.2, with fewer fine structures revealed. The results from DNS and SPMM

(Method 2) are not visually as similar as those from Method 1, but the normalized residuals

are consistently smaller than those from Method 1 (Table 3, Columns 3 and 4). Fewer spots of

extreme values of conditional diffusion are observed in the DNS results shown in Fig. 18. This

might contribute to the smaller residual values observed in Table 3. Another possible source of

improvement might come from the slightly higher correlation of R∗
sg with ξ in Method 2 as shown in

Fig. 14. However, it has to be kept in mind that the normalized residual is only one global parameter;

it is not advisable to draw definitive conclusions from one global quantity. Both Method 1 and

Method 2 involve surrogates of the shadow displacement. It is difficult to conclude which method
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provides a better representation of what the shadow displacement might look like in a stand-alone

calculation. A transported PDF simulation should be carried out to further verify the phenomena

observed in this study.

Computationally, the extraction of R∗
sg is approximately 100 times less expensive than obtaining

R∗
ODE using Method 1, because Method 1 requires integration of ODEs in time.

4.4. Conditional diffusion of individual species

In this study, the shadow displacement is forced to be closely correlated with mixture fraction.

It has been demonstrated that correlating the shadow displacement with mixture fraction enforces

a level of localness in the composition space (Secs. 4.2 and 4.3). Here, the R∗ generated in Sec. 4.2

and the model constant c calculated using Eq. 47 are used to compare the conditional diffusion of

individual species extracted from DNS and from the SPMM formulation. In this way, the localness

of SPMM in terms of species molecular mixing can be directly evaluated. Figures 19 and 20 show the

conditional diffusion comparisons for CO and H2O at tRI at yPM and yPR, respectively. Generally

speaking, SPMM can capture the shapes of the conditional diffusion in composition space for CO

and H2O quite well. The model can even capture some of the small local structures. For example,

the sign changes of condition diffusion of H2O near YH2O/YH2O,rms = 3 , R∗/R∗
rms = 3 are well

captured by the model. Similar details can also be observed in the conditional diffusion plot for CO.

Both iso-contour plots show darker color than the DNS plots, which suggests an over-prediction of

mixing rates based on the mixture-fraction-based scalar dissipation rates.

The mixing rates based on the scalar dissipation rates of each species are calculated, and the

implied c constants are plotted in Fig. 21 at tRI . The same Lagrangian time scale TL,2 is used

to calculate c in all cases. Interestingly, the mixing rates of major species H2O and CO are quite

similar inside the flame core. The ratios of the values of c obtained from mixture fraction and the

values obtained from CO or H2O are approximately between 1.5 and 2.5. It is also observed (not

shown) that the mixing rates of minor species (e.g., OH and H) are highly influenced by differential

diffusion and the premixed flame features that exist in the flame core after re-ignition [38], which

is out of the scope of the current study. For those species, the corresponding values of c are usually

higher than that of mixture-fraction-based c.

26



4.5. Variations in model constant c

The baseline values of c used in Sec. 4.2 were extracted by matching scalar dissipation rates

at each y-location (Eq. 47). It is observed that the values of c obtained in this way are much

smaller than the standard model constant derived in [21]. This difference might be due to the

highly-idealized flow conditions in [21].

The values of c that are derived from Eq. 47 (c(opt)) are compared with the values of c extracted

from Eq. 44 (c(Vφ)) in Fig. 22 (a) to (c) for different time instants. c(Vφ) ranges between 0.2 and 0.4

in the flame zones, which is consistently smaller than c(opt). The normalized residuals calculated

using c(opt) are slightly larger than those calculated using c(Vφ) (Table 3), indicating a slightly

better global prediction by using c(opt). However, the difference is not dramatic.

Since c(Vφ) is obtained through Vφ, it is of interest to examine Vφ. The profile of Vφ is compared

with that of ρ−2V ξ in Fig. 22 (d) for tRI . Only the central region of the flame where turbulence is

intense and the mixture is reactive is plotted. It can be seen that the value of Vφ approaches its

corresponding stationary-state value (3.3) in the flame zones with increasing time. At all locations

and time instants, ρ−2vξ is a good approximation to Vφ. Thus, the modified model coefficient c can

be written as a function of ρvξ. Values of ρvξ can be readily extracted on-the-fly for a velocity-

composition PDF method, which can then be used to form a dynamic model constant c for SPMM.

4.6. Variations in model constant a

As mentioned in Sec. 1, SPMM is related to other mixing models including IEM, IECM and

MMC. It has been shown in Sec. 4.1 that the value of a controls the localness of the model. By

changing a, SPMM can approach the behavior of other mixing models. For example, as a approaches

∞, b = 1
1+a → 0 and c = cmin. In this limit, R∗ and v are perfectly negatively correlated (Fig. 13),

so that conditioning on R∗ is identical to conditioning on v, and therefore SPMM degenerates to

the IECM model.

To further illustrate this point, results obtained with a = 1 and a = 10 for SPMM from DNS

(DSPMM ) are shown in Fig. 23, for tME at yPM . All sub-figures in Figs. 23 are generated directly

from the DNS database using Eqs. 34 and 38; i.e., we are not assessing model accuracy here.

Because of the negative correlation between R∗ and v, the conditional diffusion distribution should

be mirrored to judge the similarity between Fig. 23 (b) and 23 (c). The SPMM and IECM results

are more similar to one another for a = 10 compared to a = 1. For a = 10, the shapes of the
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outlines of iso-contours, the locations of the maximum and minimum conditional diffusion, and the

corresponding magnitudes are almost perfectly mirrored between SPMM and IECM. It is possible

that a = 10 is sufficiently large for the present test flame. It has been observed that results from

the SPMM model are quite sensitive to the value of a; in [21], values of a at 1.15 and 1.2 were

shown to give very different results. A recent a posteriori study [22] shows that by adjusting a and

c, the SPMM can show behaviors similar to those of EMST or IEM in terms of scatter plots of

temperature. The choices of a and c play an important role when using SPMM.

5. Conclusions

The newly-proposed shadow-position mixing model (SPMM) has been examined, using a re-

cently generated DNS database for a temporally evolving DME jet flame. Compared to alternative

models, SPMM possesses more of the attributes desired in a mixing model (Table 1). Earlier

work on SPMM [21] has been limited to highly idealized canonical systems. Here its behavior in

a more complex turbulent flame is studied. The test flame is a temporally evolving, statistically

one-dimensional slot-jet DME flame at a moderate jet Reynolds number of 13,050 [24]. The DNS

features a reduced 30-species DME chemical mechanism, and the flame parameters were chosen to

ensure that the flame undergoes significant local extinction and re-ignition. The inhomogeneous,

non-stationary nature of the configuration including strong local extinction and reignition pose a

significant challenge to SPMM, or to any other mixing model.

A keystone for SPMM is the use of a conditioning variable called the shadow displacement

(denoted R∗), which is a constructed stochastic variable. By design, R∗ is correlated with mixture

fraction and with velocity, so that conditioning on R∗ is similar to conditioning on one or both of

these key physical quantities. DNS provides all the necessary statistics required to construct R∗

(with some additional assumptions), so that an a priori study can be carried out to understand

the behavior and evaluate the performance of SPMM. One caveat of an a priori study of SPMM

is that the mechanism of correlating R∗ and mixture fraction is missing, and that correlation has

to be enforced by applying the SPMM model. Here two different methods (denoted as Methods 1

and 2) are proposed to extract R∗ from the DNS solution, with varying levels of approximation.

In Method 1, one reconstructs statistics of R∗ by solving ODEs for its mean (R) and variance (S).

Then, the maximum possible correlation with mixture fraction is built into R∗. In Method 2, one

calculates a surrogate of R∗ using local flow statistics. Method 1 requires fewer approximations,
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but it is more difficult to apply. Method 2 is of interest for its ease of implementation and low

computational cost.

Flow statistics show that the flow field remains highly nonstationary at the end of the simulation,

and the Reynolds-stress profiles show that the flow field is highly anisotropic. Smooth profiles of

the turbulent diffusivity and Lagrangian time scales are prerequisites for evaluating the SPMM

model. Here the turbulent diffusivity and Lagrangian time scales extracted from DNS are smoothed

using cross-validation and other techniques. Quantitative comparisons between DNS and SPMM

are based largely on the conditional diffusion of mixture fraction and of individual species. The

definition and quantification of the conditional diffusion from DNS and from different mixing models

is a nontrivial task, and a proposed formulation is presented in this paper. The conditional diffusions

of mixture fraction from both methods are analyzed and compared, and most of the subsequent

analysis is based on Method 1.

By comparing the correlation coefficients among shadow displacement, velocity and mixture

fraction extracted using Method 1, it is shown that the shadow position is more strongly correlated

with composition than with velocity. The correlation coefficient between shadow displacement and

mixture fraction is higher than that between velocity and mixture fraction. The strong correlation

between shadow displacement and scalars ensures the realization of localness in SPMM. However,

due to the limitation of the a priori study, a perfect correlation between the shadow displacement

and composition can not be achieved.

Conditional diffusion evaluated from DNS and from SPMM (Method 1) have been compared,

and good qualitative agreement was found. To rule out the influence of inaccuracies in mixing

rate predictions, the model parameter c was obtained by matching the scalar dissipation rates of

mixture fraction locally in time and space. Better predictions of the zero conditional diffusion lines,

and maximal and minimal conditional diffusion are observed from SPMM, compared to the IECM

model. The global normalized residuals obtained from SPMM are consistently smaller than those

obtained from the IECM model.

Similar comparisons were made based on Method 2. The global normalized residuals obtained

from Method 2 are consistently smaller than those obtained from Method 1. However, the iso-

contours of conditional diffusion are similar to those for Method 1, and some local details are

missing from the iso-contours of conditional diffusion extracted using Method 2. Compared to the

complex procedure of obtaining R∗ from Method 1, Method 2 is a viable alternative to evaluate
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the SPMM in other statistically 1-D configurations in the future.

Suitable values for model constants c and a also were explored in this study. It was found that a

value of the model constant c that is calculated from the normalized scalar flux is quite close to the

value that is calculated based on matching the scalar dissipation rates. The relationship between

SPMM and IECM was studied by changing the model parameter a, which controls the correlation

between R∗ and velocity. In this test flame, increasing a from 1 to 10 effectively reduces SPMM to

IECM.

The test flame used here is not an ideal test case for testing SPMM in the high-Reynolds number

limit, because of its moderate Reynolds number (non-negligible mean drift of molecular diffusion)

in this flame. Stand-alone transported PDF simulations at higher Reynolds numbers are needed to

further evaluate the performance of the model.
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Appendices

A. Derivation of statistically stationary solution for R and S

The statistically stationary solutions for R and S can be obtained by considering the nature of

the evolution equation for the shadow displacement R∗. A good approximation of the stationary-

state solution (Rss) is,

Rss = ⟨R∣v′′⟩ρ . (50)
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Because R∗ and v′′ have a joint-normal distribution, ⟨R∣v′′⟩ρ [30] can be shown to be:

⟨R∣v′′⟩ρ = ⟨R⟩ρ + v′′
⟨Rv′′⟩ρ
⟨v′′2⟩ρ

, (51)

and v′′ can be modeled using a Langevin equation as:

dv′′ = − v
′′

TL
dt + (2σ2/TL)1/2dW . (52)

Here, W is the Wiener process associated with the fluid particle motion. From Eqs. 15 and 52, it

follows that,

⟨R⟩ρ = ⟨v′′⟩ρ = 0 , and (53)

⟨Rv′′⟩ρ = −
σ2TL
1 + a . (54)

Thus R∗
ss can be written as:

Rss = ⟨R∣v′′⟩ρ = −
v′′TL
1 + a , (55)

and Sss can be obtained by setting the left-hand side of Eq. 16 to zero. The resulting initial

conditions at time t0 are then: where the instantaneous y-component fluctuating velocity v′′ is

taken from the DNS, and the turbulent diffusivity and time scale are extracted as explained earlier.

Time t0 is taken to be approximately 5tj in the DNS simulation (recall that the first time instant

for analysis is 6tj), to allow sufficient time for the DNS to purge any potential effects from the

somewhat arbitrary initial conditions.

31



[1] D. W. Meyer, P. Jenny, J. Comput. Phys. 228 (2009) 1275 – 1293.

[2] R. L. Curl, AIChE J. 9 (1963) 175–181.

[3] J. Janicka, W. Kolbe, W. Kollmann, J. Non-Equilib. Thermodyn. 4 (1979) 47–66.

[4] J. Villermaux, J. C. Devillon, Représentation de la coalescence et de la redispersion des domaines de
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Table 1: Desirable properties of molecular mixing models, and characteristics of five mixing models with respect to

these criteria. Five models are compared: the modified Curl’s (MCD) model, the interaction by exchange with the

mean (IEM) model, the interaction by exchange with the conditional mean (IECM) model, the Euclidean minimum

spanning tree (EMST) model, and the shadow position mixing model (SPMM). SPMM satisfies the most desired

properties among all the models compared.

Mixing models MCD IEM IECM EMST SPMM

I. Conservation of means ✓ ✓ ✓ ✓ ✓
II. Correct decay of variances ✓ ✓ ✓ ✓ ✓
III. Localness in composition space – – – ✓ ✓
IV. Bounded in allowable composition space ✓ ✓ ✓ ✓ ✓
V. Turbulent dispersion consistency – – ✓ – ✓
VI. Relaxation to Gaussian – – – – ✓
VII. Linearity and independence from other scalars ✓ ✓ ✓ – ✓
VIII. Dependence on length scales of scalar field – – – – –

IX. Dependence on Re, Sc, and Da – – – – –

X. Differential diffusion – – – – –

Table 2: Baseline model constants for SPMM.

a b c

1 0.5 3.27
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Table 3: Normalized residuals (Eq. 48) at tME and tRI , at all three locations, for Method 1, Method 2 and the IECM

model. For Methods 1 and 2, normalized residuals obtained using c(opt) (Eq. 47) and c(Vφ) (Eq. 44) are compared.

For the IECM model, normalized residuals obtained using c(opt) (Eq. 47) and c(φ) (Eq. 49) are compared.

Time & lo-

cation

M1, c(opt) M1, c(Vφ) M2, c(opt) M2, c(Vφ) IECM,

c(opt)
IECM

c(φ)
tME , yPR 0.76 1.45 0.3 0.55 2.18 0.72

tME , yPM 2.78 3.36 0.67 0.60 3.85 2.13

tME , yPL 1.52 2.60 0.9 1.50 2.56 2.18

tRI , yPR 0.65 0.95 0.21 0.40 1.97 0.93

tRI , yPM 1.37 2.67 0.40 0.59 3.50 1.28

tRI , yPL 4.30 9.35 3.40 7.01 8.06 2.19
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Figure 1: Relationships among several molecular mixing models. IEM: the interaction by exchange with the mean

model; IECM: the interaction by exchange with the conditional mean model; EMST: the Euclidean minimum span-

ning tree model; MMC: the multiple mapping conditioning model (mixture fraction based); SPMM: the shadow

position mixing model.
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Figure 2: Turbulent DME slot-jet-flame configuration. Color indicates the instantaneous temperature on the outer

surfaces of the computational domain.

Figure 3: Global burning fraction as a function of time. Symbols indicate the three time instants at which most of

the analysis is performed.
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(a) tBME (b) tBME

(c) tME (d) tME

(e) tRI (f) tRI

Figure 4: Favre-averaged mean and r.m.s. velocity components and mixture fraction profiles at three time instants.
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(a) tBME (b) tBME

(c) tME (d) tME

(e) tRI (f) tRI

Figure 5: Profiles of components of the normalized anisotropy tensor (bij =̃u′′i u
′′

j /
̃u′′
k
u′′
k
−

1
3
δij) extracted from DNS

(symbols) versus those calculated from a k − ε model (lines) at three time instants. Left column: b11 (◻), b22 (△),

b33 (○), b11,M ( ), b22,M ( ), b33,M ( ). Right column: b12 (◻), b13 (△), b23 (○), b12,M ( ), b13,M

( ), b23,M ( ).
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(a) tBME

(b) tME

(c) tRI

Figure 6: Three components of turbulent mixture fraction flux at three time instants.
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(a) tBME

(b) tME

(c) tRI

Figure 7: Favre-averaged profiles of TL at three time instants. TL,1 ( ) corresponds to the TL calculated using

Eq. 9, TL,2 ( ) corresponds to the TL calculated using Eq. 10, and TL,3 ( ) corresponds to the TL calculated

using Eq. 11.
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(a) tBME

(b) tME

(c) tRI

Figure 8: Favre-averaged turbulent scalar flux (mixture fraction) profiles calculated directly from DNS and calculated

using TL,1 and TL,2 at three time instants.
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(a) tBME , yPM (b) tBME , yPL

(c) tME , yPM (d) tME , yPL

(e) tRI , yPM (f) tRI , yPL

Figure 9: Scatter plots of − 1
ρ
▽⋅Jφ (normalized by 1/tj) versus mixture fraction ξ at tBME , tME and tRI and the

two locations yPM and yPL. The data points on one x-z plane are used, with 50 times downsampling. Red lines are

diffusion conditional on mixture fraction.
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(a) DNS (b) IECM

Figure 10: Normalized conditional diffusion of mixture fraction (DIECM (ξ)tj) extracted from DNS and from the

IECM model at tME and yPM , where yPM denotes the location of maximum ξrms.

Figure 11: Scatter plot of normalized y-direction velocity (v/vrms) versus ξ at tME and yPM .
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(a) tBME (b) tME

(c) tRI

Figure 12: Instantaneous R∗ODE fields (normalized by jet width H) from Method 1 on the central z plane at different

times. The black lines correspond to the stoichiometric mixture fraction (ξst = 0.375).
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(a) ρR∗ξ and ρV ξ at tBME (b) ρvR∗ and σξ at tBME

(c) ρR∗ξ and ρV ξ at tRI (d) ρvR∗ and σξ at tRI

Figure 13: Correlation coefficients between R∗ODE (Method 1) and v (right) and between R∗ODE and ξ (left) at

different time instants. Left column: ρR∗ξ, a = 1 ( ), ρR∗ξ, a = 10 ( ), and ρvξ ( ). The dashed boxes in

(b) and (d) enclose the regions where ξrms is larger than 50% ξrms,max to indicate the flame zones.
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Figure 14: Comparison of correlation coefficients of R∗ and ξ (ρR∗ξ) at tRI between Method 1 and Method 2.
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(a) tBME , DNS (b) tME , DNS (c) tRI , DNS

(d) tBME , SPMM (e) tME , SPMM (f) tRI , SPMM

Figure 15: Iso-contours of DSPMM
(ξ)tj (top row) and versus DSPMM

M (ξ)tj (bottom row) at different time instants at yPM . R∗ is normalized by its

corresponding r.m.s. at that time and location.
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(a) tBME , DNS (b) tME , DNS (c) tRI , DNS

(d) tBME , SPMM (e) tME , SPMM (f) tRI , SPMM

Figure 16: Iso-contours of DSPMM
(ξ)tj (top rows) and versus DSPMM

M (ξ)tj (bottom rows) at different time instants at yPL. R∗ is normalized by

its corresponding r.m.s. at that time and location.
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(a) tBME , DNS (b) tME , DNS (c) tRI , DNS

(d) tBME , SPMM (e) tME , SPMM (f) tRI , SPMM

Figure 17: Iso-contours of DSPMM
(ξ)tj (top rows) and versus DSPMM

M (ξ)tj (bottom rows) at different time instants at yPR. R∗ is normalized by

its corresponding r.m.s. at that time and location.
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(a) DSPMM , at yPM (b) DSPMM , at yPR

(c) DSPMM
M , at yPM (d) DSPMM

M , at yPR

Figure 18: DSPMM
(ξ)tj (top rows) and DSPMM

M (ξ)tj (bottom rows), based on R∗sg at 14tj at yPM and yPR.
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(a) CO, DSPMM (b) H2O, DSPMM

(c) CO, DSPMM
M (d) H2O, DSPMM

M

Figure 19: DSPMM tj (top rows) and DSPMM
M tj (bottom rows) of CO and H2O, based on Method 1 at tRI at yPM .
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(a) CO, DSPMM (b) H2O, DSPMM

(c) CO, DSPMM
M (d) H2O, DSPMM

M

Figure 20: DSPMM tj (top rows) and DSPMM
M (bottom rows) of CO and H2O, based on Method 1 at tRI at yPR.
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Figure 21: Comparison between values of c obtained by matching scalar dissipation rates of H2O, CO, and mixture

fraction ξ at tRI using Eq. 47, respectively.
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(a) tBME (b) tME

(c) tRI (d) tRI

Figure 22: Profiles of c calculated from Eq. 44 (c(Vφ)) versus c calculated from Eq. 47 (c(opt)) at different time

instants. Vφ and ρ−2V ξ at tRI are shown in (d).
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(a) a = 1 (b) a = 10 (c) IECM

Figure 23: At tME , DSPMM
(YCO)tj evaluated with a = 1 and a = 10 at yPM , compared with DIECM (YCO)tj .
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