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HIGH-TEMPERATURE 

OXY-COAL COMBUSTION
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~2800 K 

Challenging factors:

• Highly-concentrated chemically-reactive and radiatively-

participative species 

• Shift of heat transfer patterns

• Change of modeling priority (devolatilization versus surface-

reaction)



OBJECTIVES

Explore the flow, chemistry, and heat transfer, and their 

interactions through high-fidelity models. 
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Physics Proposed models

Turbulent flow field RANS-based model (LES)

Gas-phase chemistry Detailed chemistry models

Turbulence-chemistry-

radiation interactions

Transported PDF models

Radiative heat transfer P1 model (Photon Monte 

Carlo)

Spectral properties of 

gas/particle

k-distribution considering 

CO2, H2O, CO, and 

particles.

Char surface reaction 

model

CBK model with CO2, H2O, 

O2

Devolatilization model CPD model/ Two-rates 

model with fitted parameter



A SYSTEMATIC APPROACH HAS BEEN ADOPTED

IMPLEMENT AND VALIDATE PMC-LBL FOR HIGH-T OXY-CH4
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A SYSTEMATIC APPROACH HAS BEEN ADOPTED

IMPLEMENT AND VALIDATE TRANSPORTED PDF – COAL SOLVER
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METHOD
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• notional particle tracking

• mixing

• reaction

• radiation

notional 

particles
• continuity

• momentum

• energy

• pressure

• k, ɛ
mean flow

densitymesh cells

notional 

particles

photon bundles

Transported composition PDF method Photon Monte Carlo method + LBL

𝐼𝑏𝜂 ≠ 𝐼𝑏𝜂(  𝑇)𝑆𝑐 ≠ 𝑆𝑐(  𝑇) Turbulence-chemistry-radiation interactions



METHOD

Coal parcels in one 

cell (solid phase)

Enthalpy and 

mass sources for 

each individual 

species  (+/-)

PDF notional particles 

in one cell (gas phase)
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Finally
Transported PDF/PMC/coal solver

The coupling model is a challenging aspect.



TYPICAL SUB-MODELS

 Turbulence: standard k-epsilon model with adjusted Cɛ1

 Chemical mechanisms

 GRI-Mech 2.11 

 Radiative heat transfer

 P1 radiation with gray gas and particles

 P1 with k-distribution (Cai et al.)

 Mixing models

 Euclidean minimum spanning tree model (EMST)

 Variable CΦ

 Chemical acceleration

 In situ adaptive tabulation (ISAT) (parallel)

 Devolatilization

 two-rates model

 single-rate model

 modified single-rate model

 Surface reaction

 diffusion-kinetic-control model

 oxy-char combustion model ** 

*Mehta, R. S., Haworth, D. C., Modest, M. F. An assessment of gas-phase reaction mechanisms and soot models for laminar atmospheric-

pressure ethylene-air flames. Proc. Combust. Inst. 32, 2009, 1327-1337.

** Murphy, J. J., and Shaddix, C. R. Combustion kinetics of coal chars in oxygen-enriched environments. Combust. Flame. 144 ,2006, 710-729
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Initialize RANS code

Solve coal parcels position, 

velocity, energy transfer

Solve gas-phase 

momentum, equivalent 

energy, pressure 

equations

Steady 

state

Move particle in 

physical  and 

composition space

Compute 

equivalent energy 

source term

Spectral 

PMC

Transported PDF  (Fortran)FV RANS (OpenFOAM  in C++)

END

YES

NO

Add gas-phase particles 

evolved from coal

Initialize PDF particle 

codes

SOLUTION ALGORITHM
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TCI IN HIGH-TEMPERATURE OXY-CH
4

COMBUSTION

1
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mean temperature

mean  CO mass fraction



The effect of turbulence-chemistry interactions is reflected 

in the flame structure.

TCI IN TURBULENT COAL COMBUSTION

OH PLIFComputed YOH 1
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models

Conclusions
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RADIATION IS DOMINANT IN THE HIGH-T 

OXY-CH
4

FLAME

x= 1.42m

mean temperature mean XCO2 mean XCO
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SPECTRAL PMC MODEL CAN PREDICT 

ABSORPTION COEFFICIENTS IN THE HIGHLY 

PARTICIPATIVE ENVIRONMENT. 

C. Yin, L. A. Rosendahl, S. K. Kær. Chemistry and radiation in oxy-fuel combustion: a computational fluid dynamics 

modeling study. Fuel. 90(7), pp. 2519-2529.

HiTemp2010 

database 

prediction:

~ 2.
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TURBULENCE-CHEMISTRY-RADIATION 

INTERACTIONS ARE INTENSE ONLY IN THE 

FLAME CORE, NEAR THE NOZZLE. 

TRI

term 1 term 2 term 3 1
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THE LABORATORY-SCALE FLAME IS 

OPTICALLY-THIN. RADIATION HAS HIGHER 

INFLUENCE TO LARGER PARTICLES.

1
8Courtesy of Jian Cai

gas Solid 1, Solid 2, Solid 3,
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THE ASSUMPTION OF EQUILIBRIUM CHEMISTRY 

CAN BE EXAMINED BY THE FINITE-RATE MODEL. 

𝑫𝒂 =
𝝉𝒇

𝝉𝒄
𝑫𝒂𝒗𝒐𝒍 =

𝝉𝒇

𝝉𝒗𝒐𝒍

fast devolatilization

fast chemistry

H2O

𝜏𝑐ℎ𝑒𝑚 > 𝜏𝑣𝑜𝑙

CO
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𝑓𝑑𝑒𝑣𝑜𝑙 =
𝑚𝑑𝑒𝑣𝑜𝑙

𝑚𝑝𝑟𝑖𝑚𝑎𝑟𝑦 + 𝑚𝑝𝑖𝑙𝑜𝑡 + 𝑚𝑑𝑒𝑣𝑜𝑙
𝑓𝑠𝑢𝑟𝑓 =

𝑚𝑠𝑢𝑟𝑓

𝑚𝑝𝑟𝑖𝑚𝑎𝑟𝑦 + 𝑚𝑝𝑖𝑙𝑜𝑡 + 𝑚𝑑𝑒𝑣𝑜𝑙 + 𝑚𝑠𝑢𝑟𝑓
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THE MIXTURE FRACTIONS OF 

DEVOLATILIZATION AND SURFACE REACTION 

CAN BE RECONSTRUCTED FROM THE RESULTS. 
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THE ASSUMPTIONS USED IN THE MIXTURE 

FRACTION BASED METHOD COULD BE TESTED 

USING HIGH-FIDELITY MODELS.



DIFFICULTIES IN USING HIGH-FIDELITY MODELS

Coal parcels in one 

cell (solid phase)

Enthalpy and 

mass sources for 

each individual 

species  (+/-)

PDF notional particles 

in one cell (gas phase)

Model 1: distribute cell-level mass and energy source weighted by

notional particle mass (mp)

Model 2: distribute cell-level mass and energy source weighted by

notional particle temperature (Tp)

Model 3: distribute cell-level mass and energy source weighted by 

reactivity exp(-C/Tp) (C is a constant) 2
3



2
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MORE VALIDATION WITH EXPERIMENTS OR 

HIGHER-ORDER MODEL IS NECESSARY. 



CONCLUSIONS

• A transported PDF model for coal combustion using finite-
rate chemistry has been built. Components of the model has 
be validated through a hierarchy of experimental 
configurations. 

• The spectral photon Monte-Carlo method implemented in this 
work can capture the nongray effect of the high-temperature 
oxy-combustion environment naturally.

• Turbulence-chemistry-radiation interactions can also be 
captured by the model without additional effort. The 
interactions are extremely important for pollutants prediction 
(CO, NO, and soot).

• The high-fidelity models developed in this work can be used 
to guide the development of simpler models.

• LES model will be coupled with PDF method to properly 
predict the particle location.
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POSSIBLE FUTURE WORK
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